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Selection rules of ultrasound attenuation and sound-velocity renormalization are analyzed in view of their
potential application to identify Pomeranchuk instabilities �electronic nematic phase�. It is shown that the
transverse sound attenuation along �110� direction is enhanced by the Fermi-surface fluctuations near a
dx2−y2-wave Pomeranchuk instability, while the attenuation along �100� direction remains unaffected. Moreover
the fluctuation regime above the instability is analyzed by means of a self-consistent renormalization scheme.
The results could be applied directly to Sr3Ru2O7 which is a potential candidate for a Pomeranchuk instability
at its metamagnetic transition in strong magnetic fields.
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I. INTRODUCTION

In 1958, Pomeranchuk1 considered stability conditions for
normal isotropic Fermi liquids and argued that, besides a
uniform �spin-dependent� deformation of the Fermi surface,
i.e., an itinerant ferromagnetic instability, residual quasipar-
ticle interactions can induce a nonuniform deformation of the
Fermi surface. Since then, an inhomogeneous deformation of
a Fermi surface caused by quasiparticle interactions is fre-
quently referred to as “Pomeranchuk instability �PI�” It is
sometimes called “nematic” electron liquid2 because such a
Fermi-surface deformation can be characterized by a director
order parameter which is used to describe a nematic phase in
conventional liquid crystals. The nematic order introduces an
anisotropy in the otherwise isotropic physical quantities, and
the strong anisotropy of the longitudinal resistivity observed
in a clean two-dimensional electron system under high mag-
netic fields was interpreted as a signal of the development of
the nematic order.3

In lattice systems the term PI is commonly used to refer to
a Fermi-surface deformation which breaks the symmetry of
the underlying lattice. In case of two-dimensional square lat-
tices, it was shown4–7 that a PI with dx2−y2 symmetry can be
realized near van Hove fillings, which then reduces the C4
symmetry of the original Fermi surface to C2 symmetry.
These findings have stimulated a number of further theoret-
ical works8–20 on the nature of a dx2−y2-wave PI. Recently
this phase has attracted a renewed interest in several fields of
solid-state physics. The occurrence of a dx2−y2-wave PI is
hotly debated as a possible explanation for the curious phase
found in the bilayer ruthenate Sr3Ru2O7 under strong mag-
netic field.21,22 Also a dx2−y2-wave PI may provide an expla-
nation for the anisotropy in the magnetic excitation spectrum
observed in cuprate superconductors,23,24 and a similar argu-
ment is ongoing in the context of new iron-pnictide
superconductors.25,26 An analogous state in the spin channel
was also proposed27–29 and used to explain the so-called
hidden-order phase found in URu2Si2.30

Despite these extensive discussions, however, an identifi-
cation of such a dx2−y2-wave PI is not an easy task. The
problem lies in the difficulty in finding an experimental
probe which couples to the order parameter of the
dx2−y2-wave PI. Unlike a magnetic transition where we can

detect the magnetic susceptibility using neutron scattering
experiment, it is hard to detect the corresponding suscepti-
bility for a dx2−y2-wave PI which occurs in the charge degrees
of freedom. In Ref. 31, it was suggested that a spatial pattern
of the local density of states provides a direct probe of the
dx2−y2-wave PI. It is, however, applicable only through sur-
face probes, a scanning tunneling microscopy, which is eas-
ily influenced by surface conditions. Therefore, it is desirable
to have another way to identify the dx2−y2-wave PI based on
the bulk properties of a sample.

From the point of view that the characteristic anisotropy
of a dx2−y2-wave PI can be easily wiped out in a macroscopic
scale by a formation of domains between two degenerate
ground states �Figs. 1�b� and 1�c��,21,31 it had better concen-
trate on the fluctuation effects above the transition
temperature32,33 rather than concentrate on the phenomena
deep inside of the ordered state. The basic idea presented in
this paper is that we can use phonons for the detection of the
dx2−y2-wave PI. This idea is based on the fact that phonons
not only have a coupling to the order parameter of a
dx2−y2-wave PI through electron-phonon interactions but also
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FIG. 1. We consider a quasi-two-dimensional system composed
of a stack of two-dimensional square lattices. The order parameter
of a dx2−y2-wave PI considered in this work is defined by Eq. �1�
where �x ��y� represents the strength of the bond along x �y� direc-
tion as shown in Fig. 1�a�. The two states in Figs. 1�b� and 1�c� are
degenerate where the thickness of arrows indicates the strength of
the bond.
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have a propagation-direction-selective coupling. By combin-
ing this remarkable property of phonons with a well-known
fact that damping of phonons �sound attenuation� exhibits a
remarkable divergence near a second-order phase
transitions,34 we can pickup information on the dx2−y2-wave
PI. In other words, the fluctuation sound attenuation caused
by a dx2−y2-wave PI can be regarded as a direct probe of the
unconventional charge susceptibility characterizing this or-
dered state.

In this paper, we investigate the behavior of the fluctua-
tion enhancement of the sound attenuation caused by a
dx2−y2-wave PI. For this purpose, we use two different ap-
proaches. The first one is a phenomenological argument us-
ing a Gaussian-Ginzburg-Landau-Wilson action. The second
one is a microscopic analysis starting from a quasi-two-
dimensional Hubbard model with on-site and nearest-
neighbor �nn� repulsions, which is supplemented by the self-
consistent renormalization �SCR� theory35 to treat the
fluctuation effects. Both approaches are shown to give the
same result that there is a selection rule in the fluctuation
enhancement of the sound attenuation and sound-velocity
softening near a dx2−y2-wave PI, depending on the propaga-
tion directions and polarizations. This leads to a conclusion
that we can utilize these properties to detect the dx2−y2-wave
PI with the aid of ultrasound measurements.

The plan of this paper is as follows. In Sec. II, we present
a phenomenological argument to see how the Fermi-surface
fluctuations near a dx2−y2-wave PI manifest themselves in
transverse sound attenuation. The main message of this paper
is essentially given in this section. In Sec. III, we present a
microscopic analysis of a dx2−y2-wave PI, and discuss the
mean-field �MF� phase diagram as well as the effects of fluc-
tuations. Besides, we present a microscopic calculation of
the fluctuation sound attenuation, which reinforces the result
of the phenomenological argument in Sec. II. Finally in Sec.
IV, we summarize our result and give a discussion on the
application of our result to the bilayer ruthenate Sr3Ru2O7.
We use the unit kB=�=1 throughout this paper.

II. PHENOMENOLOGICAL APPROACH

In this section, we present a phenomenological argument
to see how the Fermi-surface fluctuations near a dx2−y2-wave
PI manifest themselves in phonon properties. We pay special
attention to the propagation-direction-resolved sound attenu-
ation. Because we consider the fluctuation effects above the
transition point and mainly focus on the transverse sound
attenuation, our argument is essentially different from that
given in Ref. 10 where the longitudinal sound propagation
below the transition point was discussed.

The order parameter of a dx2−y2-wave PI �Refs. 4 and 5�
which is considered in this work is defined by �see also Eq.
�25��

� =
1

2
��x − �y� , �1�

where �x��y� denote the bond strength along x�y� direction
�Fig. 1� of the underlying square lattice. The order parameter

� is odd under the permutation x↔y. In the presence of
nonzero �, the bond strength along x and y directions are
different, hence it deforms the lattice and affects the phonon
properties.

Up to the lowest order in �, the mode-coupling term �FGL
between lattice �phonon� and the PI order parameter is given
by

�FGL�U,�� = � �
Q=�q,Qz�

�uxx�Q� − uyy�Q����− Q� , �2�

where Q= �q ,Qz� is a three-dimensional �3D� wave vector
with the in-plane component q and the out-of-plane compo-
nent Qz, � is the coupling constant, uxx−uyy = iqxux− iqyuy
with the lattice-displacement field U= �u ,Uz�. The above
form of the coupling is allowed from the symmetry reason
because under the permutation x↔y both � and uxx−uyy are
odd, keeping the coupling invariant.

We now study how phonons couple to the order parameter
of a dx2−y2-wave PI depending on their propagation direction
and polarization. For the moment, we consider the case
where the wave vector and the polarization vector of a sound
wave lie within a conducting layer, i.e., Q= �q ,0� and
U= �ux ,uy ,0�, because interesting results come out in this
case. Then, the longitudinal �transverse� phonon uL �uT� can
be written as uL= q̂xux+ q̂yuy �uT= q̂yux− q̂xuy� with q̂=q / �q�.

Consider a sound wave propagating along �100� direction
�i.e., q̂y =0�. In this case, using the fact that uxx−uyy = i�q�uL
when q̂y =0, we can write �FGL in Eq. �2� as

�FGL�u,�� = ��
q

�i�q�uL�q����− q� . �3�

On the other hand, when a sound wave is propagating along
�110� direction �i.e., q̂x= q̂y�, the mode-coupling term �2� can
be written as

�FGL�u,�� = ��
q

�i�q�uT�q����− q� . �4�

Equations �3� and �4� mean that, through the interaction, Eq.
�2�, the longitudinal phonons couple to the dx2−y2-wave PI
only when they have their wave vector along �100� direction,
while transverse phonons do only when they have their wave
vector along �110� direction.

Using these results �Eqs. �3� and �4��, we next study the
effect of the fluctuations of � on sound attenuation. Dynami-
cal behaviors of sounds are described by the following action
for phonons:36

Sph�u� =
�ion

2 �
q,�m

�uL
��q,�m�KL�q,i�m�uL�q,�m�

+ uT
��q,�m�KT�q,i�m�uT�q,�m�� , �5�

where the unrenormalized kernel has the form
K�

�0��q , i�m�=�m
2 + �s�

�0��2q2 with � being the polarization
index L or T. Here, sL

�0� and sT
�0� are the bare longitudinal and

transverse sound velocities, �ion is the mass density of ions,
and �m=2�Tm is the bosonic Matsubara frequency. The in-
formation on phonon dynamics is extracted by studying the
retarded quantity K�

R�q ,��=K��q , i�m→�+ i0+�. In the
presence of itinerant electrons, excitations of particle-hole
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pairs yield an imaginary part in K�
R of the form37

Im K�
R�q ,��=−� /	ph,��q� for small �. This results in a finite

phonon lifetime 	ph,��q�. The sound attenuation 
��q� is re-
lated to the phonon lifetime as 
��q�=1 / �s�	ph,��, or equiva-
lently,


��q� = −
1

s��
Im K�

R�q,�� . �6�

The phonon propagator �K�
R�q ,���−1 is modified in the pres-

ence of � fluctuations. When we consider the Gaussian fluc-
tuation region for simplicity, the corresponding action is
given by

SGL��� = �
q,�m

���q,�m�� 1

�d�q,i�m����q,�m� , �7�

where

1

�d�q,i�m�
= �0 + 0

2q2 +
��m�

�d�q�
�8�

is the d-wave density correlation function, �0�T−Tc0 mea-
sures the distance from the mean-field transition temperature
Tc0, 0, and �d�q�=w0�q� are the bare correlation length and
the damping rate of fluctuations, respectively �for the micro-
scopic definition, see Eqs. �41� and �42��.

After integrating out the dx2−y2-wave PI order parameter �
by performing the Gaussian integral in SGL���+�SGL�u ,��
�where �SGL�u ,��=	d	�FGL�u ,���, we can show that the
couplings �Eqs. �3� and �4�� give an additional contribution

�K��q,i�m� = −
�2q2

4�ion
�d�q,i�m� �9�

to K��q , i�m�. This leads to the divergent sound attenuation

��q��

1
� Im �d

R�q ,��. Recalling that the in-plane longitudi-
nal phonon �transverse phonon� couples to � only when the
wave vector is along �100� direction, �110� direction, we ob-
tain


L100 � �0
−2, �10�


T110 � �0
−2, �11�

while there are no divergent behaviors for sounds along the
other directions,


L110:no divergence, �12�


T100:no divergence. �13�

Here, L100 means the longitudinal sound-wave propagating
along �100� direction, etc.

In addition to Eq. �2� there is another relevant term,

�FGL� �u,�� = ���
q,q�

���q + q����q���i�q�uL�q�� , �14�

in which the longitudinal sound modes couple to the
dx2−y2-wave PI order parameter. As before, by integrating out
� in SGL���+�SGL� �u ,�� �where �SGL� �u ,��=	d	�FGL� �u ,���
and assuming a three-dimensional behavior of the fluctua-

tions, we can show �see also the paragraph containing Eq.
�63�� that this coupling gives the longitudinal sound attenu-
ation the same divergent contribution as Eqs. �10� and �11�,


L � �0
−2 �in all directions� . �15�

Note that the latter result is the same as that obtained in Ref.
38 for fluctuation sound attenuation near a magnetic transi-
tion, because the coupling �Eq. �14�� and the coupling dis-
cussed in Ref. 38 �Eq. �1� therein� have the same form.

Before proceeding to the summary of this section, we
comment on the behavior of the sound velocity. The anomaly
in the sound attenuation is intimately related to the softening
of the sound velocity. The renormalization of the sound ve-
locity due to the fluctuation of � is given by

s� = s�
�0�
1 + �s�

�0�q�−2Re �K�
R�q,� → 0� . �16�

This means that the divergence in the sound attenuation is
accompanied by the reduction in the sound velocity �sound-
mode softening�.

The results obtained in this section are summarized in Fig.
2. Equations �10�–�13� and �15� mean that longitudinal sound
attenuation always shows a divergent behavior on approach-
ing a second-order phase transition of a dx2−y2-wave PI. On
the other hand, in-plane transverse sound attenuation are di-
vergent only when their wave vectors are along �110� direc-
tion. Likewise, longitudinal sound velocities always show a
critical sound mode softening near a dx2−y2-wave PI, whereas
in-plane transverse sound velocities show the softening only
when their wave vectors are along �110� direction. We there-
fore propose to detect the dx2−y2-wave PI by using a measure-
ment of propagation-direction-resolved transverse sound at-
tenuation and sound velocities.

III. MICROSCOPIC ANALYSIS

In this section, we present a microscopic analysis of fluc-
tuation sound attenuation near a dx2−y2-wave PI in order to
reinforce the phenomenological argument given in the previ-
ous section. First, we perform a mean-field analysis of a

uT
[110]:
couple to η
divergent sound attenuation
softening of sound velocity

[100]:
not couple to η
no divergent sound attenuation
no change in sound velocity

uL

[100]:
couple to η
divergent sound attenuation
softening of sound velocity

[110]:
couple to η
divergent sound attenuation
softening of sound velocity

FIG. 2. Summary of the results derived in Sec. II. In the figure,
uL�uT� represents longitudinal �transverse� phonons with the wavy
line being the direction of the wave vectors.
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dx2−y2-wave PI starting from a single-band Hubbard Hamil-
tonian with on-site and nearest-neighbor repulsions, and
draw the mean-field phase diagram. Next, we investigate the
fluctuation effect above the transition temperature by em-
ploying the self-consistent renormalization formalism.35 Fi-
nally, based on the same microscopic model, we present a
diagrammatic calculation of the fluctuation sound attenuation
above the transition temperature, which is shown to give the
same conclusion derived within the more phenomenological
approach of the previous section.

A. Mean-field phase diagram

We start from a single-band Hubbard Hamiltonian on a
two-dimensional square lattice,

H = H0 + Himp + HU + HV, �17�

where

HU = U�
ri

n↑�ri�n↓�ri� �18�

and

HV = V �
�ri,rj�

�
�,��

n��ri�n���r j� �19�

describe the on-site and nearest-neighbor repulsions. Here
n��ri�=c�

†�ri�c��ri� is the number operator for electrons on a
lattice site ri with spin projection �= �1, and �ri ,r j� means a
bond between a nearest-neighbor lattice sites ri and r j.

In this work we consider the effect of an external mag-
netic field Hext perpendicular to the two-dimensional plane.
Hence, the first term in Eq. �17� describes the kinetic energy
plus the Zeeman energy,

H0 = �
p,�

��p − �F�np,� − h�
p

�np,↑ − np,↓� , �20�

where np,�=cp,�
† cp,� and cp,�= 1


N
�ri

c��ri�e−ip·ri with the num-
ber of lattice sites N. Here �p=−2t�cos�pxa�+cos�pya��
−4t� cos�pxa�cos�pya�−2t��cos�2pxa�+cos�2pya�� is the
single-particle dispersion with hopping amplitudes
−t ,−t� ,−t� between nearest neighbor, next-nearest neighbor
�nnn�, and third-nearest neighbor, �F is the Fermi energy un-
der the zero magnetic field, and h=�BHext with the Bohr
magneton �B. Because we neglect the influence of magnetic
field on orbital degrees of freedom �spin-orbit interaction,
Landau diamagnetism�, the magnetic-field effect is absorbed
into the spin-dependent Fermi energy �F,��h�=�F+�h. Here-
after, Length and energy are measured in unit of the lattice
spacing a and the nearest hopping amplitude t.

The second term Himp in Eq. �17� represents the spin-
independent short-range isotropic �s-wave� impurity scatter-
ing,

Himp = �
ri,�

uimp�ri�n��ri� , �21�

where the impurity potential uimp obeys the Gaussian en-
semble uimp�ri�=0, uimp�ri�uimp�r j�=nimp�u�2�i,j with nimp and
u being the impurity concentration and the strength of the

impurity potential. We treat the impurity potential using Born
approximation, and the impurity-averaged bare Green’s func-
tion is given by

G�
�0��p,i�n� =

1

i�̃n − p,�

, �22�

where k,�=�p−�F,�, and �̃n=�n+� sign��n� with the quasi-
particle scattering rate �.

As discussed in Ref. 7, Eq. �17� contains a phase with
dx2−y2-wave PI as a mean-field solution. This phase appears
when the Fermi energy coincides with van Hove energy5

�VH=4�t�− t�� �Fig. 3�. In this paper we consider a situation
where the zero-magnetic-field Fermi energy �F does not sat-
isfies the “van Hove condition” ��F��VH�, but a moderately
large external magnetic field h tunes one of the spin-
dependent Fermi energies �F,���h� to a van Hove condition.
In this situation, the spin component �� satisfying
�F,���h�=�VH is relevant to the occurrence of the PI, and we
hereafter consider only the “active” spin component ��. The
antiferromagnetic correlations described by the on-site repul-
sion HU are suppressed because of the polarization under the
strong external magnetic field. Although the ferromagnetic
state could compete with the PI, we discuss the case where
the PI is stabilized by choosing the parameters VU /2.

We first make a mean-field decoupling by taking the two
contractions,

HV = V �
�ri,rj�

�
�,��

c�
†�ri�c��ri�c��

† �r j�c���r j� ,
�23�

one by one. This yields the following mean-field Hamil-
tonian:

HV
MF = −

1

2�
ri

�
�=�x̂,ŷ

���ri�c��
† �ri�c���ri + �� , �24�

where ���ri�=V�c��
† �ri+��c���ri��, and we have picked up

only the “active” spin component �� satisfying the van Hove
condition. We further assume that the parity of �� with re-
spect to � is even �i.e., ��=�−��. Then, we have

εεF(h)εF, (h)εF,

N(ε)

εVH

FIG. 3. Schematic view of the density of states N��� considered
in this paper. The density of states has a peak at van Hove energy
�VH=4�t�− t��, and a spin-dependent Fermi energy �F,↑ touches �VH

under magnetic fields. In the situation shown here, the up spin is
assigned as the “active” spin component.
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HV
MF = −

1

2�
ri

����ri� + ���ri��c��
† �ri�c���ri + x̂� + �− ��ri�

+ ���ri��c��
† �ri�c���ri + ŷ�� + H.c., �25�

where ��ri�= 1
2 ��x�ri�−�y�ri�� and ���ri�= 1

2 ��x�ri�+�y�ri��.
Because �� possesses the fourfold symmetry of the underly-
ing square lattice and can be regarded as a mass renormal-
ization of the quasiparticles, we hereafter neglect it. On the
other hand, a nonzero value of � corresponds to the defor-
mation of the Fermi surface which expands along the px axis
and shrinks along py axis �or vice versa� and Eq. �25� de-
scribes a dx2−y2-wave PI. Going to the momentum represen-
tation, we have

HV
MF = − �

q,p
dp��q�cp+q,��

† cp,��, �26�

where dp=cos px−cos py, and ��ri�=�q��q�eiqri.
Several comments are in order. In a situation where the PI

could be stabilized under the zero magnetic field, it would
compete39 with the so-called d-density wave state, a state
with ��q= � �� ,���. Under a moderately large magnetic
field, however, the d-density wave state is not expected to be
competitive anymore since this state shows diamagnetic
properties40 suggesting that such a state is suppressed under
sizable magnetic fields. Solving these problems is beyond
our scope because it would require to include Landau dia-
magnetism such that the resulting analysis becomes consid-
erably more complicated. Therefore in the following we as-
sume that a uniform ��q=0� gives the ground state, and the
momentum q appearing in Eq. �26� is small �i.e., q�1�.

The equation determining the impurity-averaged Green’s
function for the “active” spin component �� is diagrammati-
cally shown in Fig. 4 where the single solid line represents
the impurity-averaged bare Green’s function �Eq. �22��.
Hereafter, we neglect the last diagram in Fig. 4 assuming that
the impurity potential is sufficiently weak. Due to the sym-
metry difference between � and the impurity potential, this
approximation is exact up to the linear order in �. Physically
this means that the impurity effect on the second-order tran-
sition line is rigorously treated while the first-order transition
line may slightly deviate from the exact result. We note here
that even with this simplification, the required full numerical
calculation is rather involved. With this approximation, the
equation for the impurity-averaged Green’s function is
solved as

G���p,i�n� =
1

�G��
�0��p,i�n��−1 + dp�

, �27�

where the order parameter � is determined by the following
self-consistent equation:

� = V�
p

dpf��p,�� − dp�� . �28�

Here we have introduced a shorthand notation 	p= 1
N�p, and

the quantity

f��p,��� = T�
�n

G��
�0��p,i�n� �29�

may be considered as the impurity-averaged Fermi distribu-
tion function. The corresponding mean-field free energy is
given by

FMF

N
=

�2

2V
− T�

�n

�
p

ln
�G��

�0��p,i�n��2

�G���p,i�n��2
. �30�

In the pure limit ��→0�, the function f� becomes
equal to the Fermi distribution function f0�x�= �1+e�x�/T�−1

due to the identity T��n
G��

�0��p , i�n�= f0�p,���. This
would simplify the self-consistent Eq. �28�, and the
free energy Eq. �30� would be reduced to a simpler form
FMF

N = �2

2V −T	pln��1+e−�p−dp��/T� / �1+e−p/T��. However be-
cause we consider the effect of nonmagnetic impurities in
this work, we need to use Eqs. �28� and �30�.

The mean-field phase diagram can be drawn by making a
Landau expansion17 of the free energy Eq. �30� as

FMF

N
→

FGL

N
= �aGL

2
��2 + �bGL

4
��4

¯ , �31�

where the coefficients aGL and bGL are given by

aGL =
1

V
− �

p
dp

2�− f���p,���� , �32�

bGL =
1

3!
�

p
dp

4�f���p,���� , �33�

with a convention f���p,��= �
�p,�

f��p,��, etc.
A condition aGL=0 defines a second-order transition line

Tc0�h� in the mean-field approximation, if the coefficient of
the quartic term of the GL free energy �bGL� is positive. In
case of a negative quartic term the transition becomes of the
first order, and the first-order transition line Tc

��h� is deter-
mined by the conditions FMF���=0 and �FMF��� /��=0 for a
nonzero �, where FMF is defined in Eq. �30�.

We calculate the mean-field phase diagram by using a
square mesh of 500�500 in the Brillouin zone. In Fig. 5�a�,
we show the calculated mean-field phase diagram for a mod-
erately clean sample ��=0.01�. Not surprisingly, the phase
diagram in this clean case is quite similar to that already
obtained in the pure limit ��=0� in the previous work,41

since as will be discussed below Eq. �37� in the next section,
our model is similar to that used in Ref. 41 except for the

η

η

FIG. 4. The equation determining the impurity-averaged
Green’s function for the “active” spin component ��. The single
solid line represents the impurity-averaged bare Green’s function
�Eq. �22��. A double solid line and dotted line with a cross represent
the impurity-averaged Green’s function, and impurity scattering,
respectively.
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difference in a spin mixing. The important feature in the
phase diagram is that the transition is of second order at
higher temperatures while at lower temperatures a first-order
transition occurs. In the figure, we used a nonzero third
nearest-neighbor hopping t�=0.2. This is because when we
use smaller values of t�, a finite momentum state ��q�0� is
stabilized due to a nesting condition.

Next let us see how a slight increase in the impurity scat-
tering modifies the mean-field phase diagram.42 In Fig. 5�b�,
the mean-field phase diagram for a dirtier case ��=0.06� is
shown. First, we see that the PI is easily suppressed by the
increased impurity scattering. This is understandable because
the order parameter of the PI and the impurity potential have
different symmetry. Hence, the underlying mechanism is
analogous to what happens to a disordered d-wave supercon-
ductor where Anderson’s theorem is violated due to the un-
conventional nature of the order parameter. Second, the first-

order transition line at low temperatures disappears while the
second-order transition still survives. These two features
concerning impurity effects are important when we discuss
the relevance of the PI scenario to the metamagnetic transi-
tion found in Sr3Ru2O7 in Sec. IV.

B. SCR treatment of the Fermi-surface fluctuation

In this section, we study how the mean-field result ob-
tained in the Sec. III A is modified by fluctuation effects.
Following Refs. 14 and 18, we define the �thermal� d-wave
density correlation function

�d�q,i�m� =
1

N
�

0

1/T

d	ei�m	�nd�q,	�nd�− q,0�� , �34�

where nd�q�=�pdpcp+q/2,��
† cp−q/2,�� is the d-wave density op-

erator in the “active” spin component ��. In general, �d has
the following structure:

1/�d = 1/�d
irr − V , �35�

where �d
irr is the irreducible part of �d. To proceed further to

the detailed calculation of �d, it is convenient to rewrite the
interaction Hamiltonian HV in the momentum space,

HV =
1

2N
�

p1,p2,p3

�
�,��

Vp1−p2
cp1,�

† cp2,�cp3,��
† cp1+p3−p2,��,

�36�

where Vp=2V�cos px+cos py�. Now we decouple Vp1−p2
as Vp1−p2

=V�dp1
dp2

+sp1
sp2

+ pp1

�+�pp2

�+�+ pp1

�−�pp2

�−��, where dp

=cos kx−cos ky, sp=cos kx+cos ky, and pp
���=sin kx�sin ky.

Because the four van Hove points in the Brillouin zone en-
hance the interaction with dx2−y2 form factor5 dp, we hereafter
consider only this channel. After changing the ordering of
fermion operators and setting p1=p+q /2, p2=p�+q /2, p3
=p�−q /2, we have

HV → HV� = −
V

2N
�

q
nd�q�nd�− q� . �37�

This is essentially the same model as used in Refs. 12 and 41
except for the fact that the interaction HV� acts only among
the active spin component ��.

The so-called random phase approximation �RPA� for �d
is obtained when we adopt the simplest building block

�d,0
irr �q,i�m� = − T�

�m

�
p

dp
2G��

�0��p,i�n�G��
�0��p + q,i�n + i�m�

�38�

as the irreducible �d
irr. Hereafter, we write the d-wave density

correlation function in a dimensionless form by introducing
�̃d=�d /�d,0

irr . Then, the RPA d-wave density correlation func-
tion is given by

1/�̃d,RPA�q,i�m� = 1 − V�d,0
irr �q,i�m� . �39�

Near the second-order PI, the retarded function
�̃d,RPA

R �q ,��= �̃d,RPA�q , i�m→�+ i0+� takes the same form as
Eq. �8�,

0-0.02 0.02

δh=h- VHh

(a)
0.1

0

T

0.1

0

T

δh=h- VHh
0-0.02 0.02

(b)

Γ=0.01

Γ=0.06

Tc(h)

Tc0(h)

Tc0(h)
Tc(h)

Tc(h)* Tc(h)*

FIG. 5. Phase diagrams obtained from Eq. �17� for two different
strengths of the impurity scattering, �a� �=0.01 and �b� 0.06. Note
that length and energy are measured in unit of the lattice spacing a
and the nearest hopping amplitude t. We use U=3.0 and V=1.5 for
electron repulsions, and t�=0.4 and t�=0.2 for hopping. Two �thick
and thin� dashed lines are defined by aGL=0 where the thick dashed
line represents a mean-field second-order phase transition line
Tc0�h� while the thin dashed line is an unphysical one because it is
replaced by the following first-order transition. A line with full
circles show a first-order transition line Tc

��h� defined by FMF���
=0 and �FMF��� /��=0. A line with open circles represents the
fluctuation renormalized second-order transition line Tc�h�. A dotted
line represents a temperature below which the quartic term bGL �Eq.
�33�� of the Ginzburg-Landau free energy becomes negative.
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��̃d,RPA
R �q,���−1 = �0 + 0

2q2 − i
�

w0�q̂��q�
, �40�

where �0=VaGL�T−Tc0 with aGL and Tc0 being the qua-
dratic coefficient in Eq. �32� and the mean-field transition
temperature. Also, 0

2 and w0 are given by �see Appendix�

0
2 = V�

p
dp

2� f���p,���

12
�vx

2 + vy
2� +

f���p,���

4
�Mx + My�� ,

�41�

1

w0�q̂�
= V�

p
dp

2� − f���p,���

2�/qc + ivp,�� · q̂
� , �42�

where Mj = �1 /2��2p /�kj
2 for j=x, y and qc is the wave-

vector cutoff. We note that, as was already mentioned above
Eq. �27�, neglecting the impurity vertex corrections,43 which
would otherwise transform the dynamical behavior into a
diffusive one, remains exact in the calculation of these quan-
tities.

In the presence of interlayer coupling, the critical behav-
ior is expected to be governed by three-dimensional
fluctuations,44 and we assume in this work an anisotropic 3D
behavior of the fluctuations. Microscopically, the three di-
mensionality is introduced by adding a z-axis dispersion
��Pz

=−�t cos�Pz� into Eq. �20�. Instead of doing so, how-
ever, we here introduce the three dimensionality in a more
phenomenological way, by replacing the two-dimensional
wave vector q appearing in �̃d�q , i�m� with a three-
dimensional wave vector Q�= �q ,Qz /��, namely,

�̃d�q,i�m� → �̃d�Q�,i�m� , �43�

where �=0 /c0 is the anisotropy parameter given by the
ratio of the in-plane correlation length to the out-of-plane
correlation length. The above procedure is justified at least
for a system with anisotropic ellipsoidal 3D Fermi surface.
Here we would like to mention the recent proposal in the
context of high-Tc cuprates45 that the interlayer configuration
of the nematic order becomes alternate pattern of ��0 �Fig.
1�b�� and ��0 �Fig. 1�c��. We do not take into account such
a possibility here, since this configuration costs the elastic
energy of the crystal lattice. We would like to point out that,
while a minor change in the form of the propagator in Eq.
�40� is needed if the dx2−y2-wave PI has such a configuration,
the main result of this paper is not changed, at least qualita-
tively.

Now we consider the effect of mode coupling between the
fluctuations. In the bosonic languages,46,47 this is given by
the self-energy renormalization for the fluctuation propagator
coming from the quartic term of the action. In the fermionic
languages which we adopt in this work, the corresponding
mode coupling is given by the three diagrams48 shown in
Fig. 6, which give

�̃d
irr = �̃d,0

irr + ��̃d
irr, �44�

��̃d
irr = − 3bGLV2T�

�m

� �d3Q�

�2��3 �̃d�Q�,i�m� , �45�

where bGL is the coefficient of the quartic term in the
Ginzburg-Landau free energy given by Eq. �31�. Substituting
Eq. �44� into Eq. �35� and expanding it in terms of ��d

irr, we
obtain

1/�̃d = 1/�̃d,RPA − ��̃d
irr, �46�

where ��̃d
irr also depends on �̃d through Eq. �45�.

As discussed in Ref. 47, the SCR formalism is a self-
consistent one-loop approximation for the mass renormaliza-
tion

� = 1/�̃d�Q� = 0, i�m = 0� . �47�

Substituting Eq. �47� into Eq. �46� and making the contour
deformation for the Matsubara summation, we obtain the fol-
lowing SCR equation to determine �:

� = �0 + �� , �48�

�� = 3bGLV2�
−�

� d�

2�
�

0

Qc� �d3Q�

�2��3 coth� �

2T
�Im �̃d

R�Q�,�� ,

�49�

where Qc� is the wave-vector cutoff. The frequency
integral in Eq. �49� can be performed using the relation
coth�x /2�=1+2 / �ez−1� and 	0

�dx�ex−1�−1�x / �x2+c2��
= �1 /2��ln�c /2��−� /c−��c /2���. Then, introducing the

normalized wave vector Q̃�=0Q�, the final result can be
written as

χd
irr

χd
irr

(a)

(b)

(c)

irr

irr
χd,0

irr

δχd
irr

FIG. 6. Diagrams for the fluctuation propagator of dx2−y2-wave
PI ��a� and �b�� and the irreducible dx2−y2-wave correlation function
giving the mode coupling between fluctuations ��c��. The solid line
represents the impurity-averaged bare Green’s function of quasipar-
ticles, the dashed line, the next-nearest-neighbor repulsion �Eq.
�36��.
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�� =
3bGLV2�

2�20
3 �

0

Q̃c� �Q̃�2dQ̃��� T

�Q̃�
�

�2ZQ̃��ln ZQ̃� −
1

2ZQ̃�
− ��ZQ̃��� , �50�

where ��Z� is the digamma function, �Q̃�=�+ Q̃�2,

ZQ̃�=�Q̃�w0�Q̃�� / �2�T0�. When the condition ZQ̃��1 is sat-
isfied, we can set 2ZQ̃��ln ZQ̃�− �1 /2�ZQ̃�−��ZQ̃���→1 and
the above expression reproduces the result of the Hartree
approximation for the mass renormalization due to classical
fluctuations,49 which means that Eq. �50� can describe both
quantum and classical fluctuation regions.

In Fig. 7, we plot the temperature dependences of several
parameters characterizing the bare d-wave density correla-
tion function, the mass term �0, correlation length 0, and
damping coefficient w0, as well as the mode-coupling param-
eter bGL. Strictly speaking, w0�q̂� in Eq. �42� depends on q̂
but we average them using two values at q= x̂ and q= �x̂
+ ŷ� /2, i.e., w0�q�→w0

av= �1 /2��w0�x̂�+w0��x̂+ ŷ� /2��. From
the figure, we can see the following three points. First, as
was already discussed in the pure limit41 ��=0�, the bare
mass term �0 is as small as �0.1 in a wide temperature
region above the mean-field transition temperature Tc0. Sec-
ond, the correlation length is shorter than the lattice spacing
a=1, which can be understood from Eq. �41� because the
quasiparticle velocity �vp� is quite small near van Hove fill-
ing. Third, the mode coupling parameter bGL is one order of
magnitude larger than other parameters ��0 ,0 ,1 /w0� char-
acterizing Gaussian fluctuations. All these features result in
strong fluctuations near the dx2−y2 PI.

In Fig. 8, we plot the temperature dependence of the
renormalized mass �=1 / �̃d�Q�=0 , i�m=0� as well as the
bare mass �0=1 / �̃d,RPA�Q�=0 , i�m=0�. As expected, ��T�
coincides with �0�T� well above the mean-field transition
temperature Tc0 but it deviates from the mean-field result
near and below Tc0. From the figure we determine the
fluctuation-renormalized transition temperature Tc by a con-

dition ��Tc��10−3. In Fig. 5 we have also plotted Tc�h� thus
determined. We can see that the fluctuation region becomes
smaller on approaching the first-order transition line.

C. Fluctuation sound attenuation

We consider the electron-phonon interaction following the
argument given by Walker et al.,50 and begin with the tight-
binding Hamiltonian

Hel-ph = �
�

g����
ri,�

�u�ri� − u�ri + ���

��c�
†�ri�c��ri + �� + c�

†�ri + ��c��ri�� , �51�

where u�ri� is the displacement of the ion at ri, � is the lattice
vector, g���=�t��� with the hopping amplitude t��� between
sites ri and ri+�. Following the procedure in Ref. 50 and
neglecting umklapp processes, the interaction between elec-
trons and a sound wave with wave vector K and polarization
� is given by

Hel-ph =
1


N
�

P,K,�
F�K̂,���P�
�K,�

�0�

2
BK,�cP+K,�

† cP,�, �52�

where BK,�=bK,�−b−K,�
† with the phonon annihilation opera-

tor bK,�, ê� is the polarization vector, and the electron-phonon
vertex function F�K̂,���P� is given by

F�K̂,���P� =
− 2


�ions�
2�

�

�K̂ · �̂��ê� · g����cos�P · �� . �53�

Here, all momenta denoted by capital letters are 3D vectors.
However, we consider below the case where the wave vector
and the polarization vector of a sound wave lie within a
conducting layer because interesting results come out in this
case, and we set in the following P= �p ,0�, K= �k ,0�, etc. In
this work we consider the electron-phonon coupling through
at most the next-nearest-neighbor interactions. Assuming that

g��� is proportional to �̂, we make an expansion

0.04 0.06 0.08 0.10
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0
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µ0(T)

Tc0=0.0776T
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G
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)(T)01/wav

ξ 0
(T

)
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(T
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,
(T

)
0

1/
wav

FIG. 7. Temperature dependences of parameters characterizing
the bare d-wave density correlation function; the mass term �0,
correlation length 0, and damping coefficient w0. The mode-
coupling parameter bGL is also plotted. The parameters used in this
figure are the same as in Fig. 5�a�.
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χ
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’=

iω
=

0)
d

T
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~
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χ
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=
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0

Tc0=0.0776
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(a) Γ=0.01 (b) Γ=0.06

FIG. 8. Temperature dependence of the renormalized mass
�=1 / �̃d�Q�=0 , i�m=0� �open circles� and the bare mass
�0=1 / �̃d,RPA�Q�=0 , i�m=0� �dashed line� for �a� �=0.01 and �b�
0.06. We use the wave-vector cutoff Qc�=0.0555 and anisotropy
parameter �=5, and other parameters are the same as in Fig. 5. Two
curves are calculated along a fixed magnetic field h=hVH where the
mean-field transition is always of second order. The fluctuation-
renormalized transition temperature Tc is determined by a condition
��Tc��10−3.
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g���=gnn�̂nn+gnnn�̂nnn where gnn�gnnn� is the coupling con-
stant through the nearest- �next-nearest-� neighbor interac-
tions.

Then, for transverse phonons propagating along the �100�
direction, because the coupling via the nearest-neighbor in-
teraction disappears in this case, the dominant coupling is
given by the next-nearest-neighbor interactions as

FT100�p� = �T100�2 sin px sin py� , �54�

while for transverse phonons propagating along the �110�
direction,

FT110�p� = �T110�cos px − cos py� , �55�

where �T100=−gnnn

Lz /�ion�sT100�2 ��T110

=−gnn

Lz /�ion�sT110�2� with system’s c-axis dimension Lz.

The electron-phonon vertex function for the longitudinal
phonons is given by

FL�p� = �L�q̂x
2 cos px + q̂y

2 cos py� �56�

with �L=−gnn

Lz /�ion�sL�2. The important point here is that

in each case F�K̂,���p� can be expressed as F�K̂,���p�=�Wp
with a form factor Wp and the corresponding electron-
phonon coupling constants �. For T100 phonons, Wp is
equal to the dxy-symmetry form factor dp�=2 sin px sin py,
while it is equal to the dx2−y2-wave form factor dp for T110
phonons. In case of longitudinal sounds, Wp=sp+dp for L100
phonons while Wp=sp for L110 phonons where sp is defined
below Eq. �36�. We note that the inclusion of an isotropic
vertex function into Eq. �56�, which ensures the charge neu-
tral condition50 for longitudinal phonons, does not change
the main result discussed below.

Using the electron-phonon interaction Eq. �52�, the sound
attenuation is calculated from the phonon Green’s function

�D��k,i�m��−1 = �D�
�0��k,i�m��−1 − ���k,i�m� , �57�

where D�
�0��k , i�m�=−��k,�

�0��2 / ��m
2 + ��k,�

�0��2� is the bare
phonon Green’s function, and ���k , i�m� is the phonon
self-energy. The retarded phonon self-energy, ��

R�k , i�m�
=���k , i�m→�+ i0+�, determines the phonon lifetime as
1 /	ph,�=−��k,�

�0��2 1
� Im ��

R�k ,��, and the sound attenuation

��k� for the phonon with wave vector k and polarization �
is given by


��k� = − � ��k,�
�0��2

s�
�0� � 1

�
Im ��

R�k,�� . �58�

Strictly speaking, the sound velocity in Eq. �58� should be
understood as a renormalized one,

s� = s�
�0�
1 − Re ��

R�k,� → 0� , �59�

with the bare velocity s�
�0�. However, because the renormal-

ization of the sound velocity due to the collective fluctuation
is usually quite small in the experimental resolution51

��s�−s�
�0�� /s�

�0�10−3–10−4�, we use the bare sound velocity
in Eq. �58�. Note, however, that the unrenormalized sound
velocity should be used only in Eq. �58�. As mentioned at the
end of Sec. II, the measurement of the softening of the sound
velocity is also a key experiment to detect the dx2−y2-wave PI.

Consider first the sound attenuation caused by itinerant
electrons in the absence of the dx2−y2-wave PI. In this case the
irreducible phonon self-energy is given by37 �Fig. 9�a��

��
�0��k,i�m� = �2T�

�n

�
p

Wp
2G��

�0��p,i�n�G��
�0��p + k,i�n + i�m� .

�60�

This gives the sound attenuation without the Fermi-surface
fluctuations, 
�

MF�k�=−���k,�
�0��2 /s�� 1

� Im ��
�0�R�k ,��.

Now we consider the effect of the dx2−y2-wave PI. The
relevant diagrams are shown in Figs. 9�b�–9�f� where we
have neglected impurity vertex corrections due to the reason
mentioned above Eq. �27�. The simplest diagram is given by
Fig. 9�b� which corresponds to the sound attenuation derived
from the mode-coupling term �2�. Diagram �b� gives the
sound attenuation derived from the mode-coupling term �14�,
and is analogous to the Aslamasov-Larkin diagram52 for the
fluctuation conductivity in a superconductor. Here we have
neglected the vertex corrections due to mode coupling �e.g.,
Fig. 1�c� in Ref. 53�. Diagrams �d� and �f� give the contribu-
tions which are not described by the phenomenological
�bosonic� argument in Sec. II, and analogous to the Maki-
Thompson diagram54,55 �diagram �d�� and density of states
diagrams56 �diagrams �e� and �f��. Note, however, that the
analytical expression of each diagram is different from that
of a superconducting fluctuation contribution because the PI
is a kind of diagonal long-range order while the supercon-
ductivity is an off-diagonal long-range order.

For the moment, we focus on the transverse sound attenu-
ation because it is this case where the fluctuation sound at-
tenuation is propagation-direction selective. We first consider
diagram �b�. For the transverse sound along �100� direction,

(a)

(b)

(c) (d)

(e) (f)

FIG. 9. Diagrams for the phonon self-energy ���k , i�m�. An
open circle represents the electron-phonon vertex in Eq. �53�, a full
circle represents the dx2−y2-wave vertex dp, a wavy line represents
the phonon Green’s function, and a double zigzag line represents
the fluctuation propagator defined in Fig. 6.
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because the electron-phonon vertex function FT100�p� �Eq.
�54�� has the dxy symmetry, the phonon self-energy does not
couple to the collective fluctuation of the dx2−y2-wave PI.
Hence the phonon self-energy has no divergent contribution,
and is given by

�T100�k,i�m� = �T100
�0� �k,i�m� , �61�

where �T100
�0� is defined in Eq. �60� with Wp=dp�. On the other

hand, the transverse sound along �110� direction does couple
to the dx2−y2-wave Fermi-surface fluctuation because the
electron-phonon vertex function FT110�p� is proportional to
the dx2−y2-wave form factor. This gives the divergent phonon
self-energy

�T110�k,i�m� = − ��T110�2�d�k,i�m� , �62�

where �d�k , i�m� behaves as Eq. �8� near the second-order
transition.

Next we consider diagram �c�. In this case, it is easy to
show that the triangle blocks in this diagram vanish for both
T100 and T110 phonons, hence there is no contribution from
this diagram. This is consistent with the argument in Sec. II
that Eq. �14� couples only to the longitudinal sound, because
diagram �b� gives the sound attenuation derived from this
mode-coupling term �14�.

We then consider diagrams �d� and �f� which were not
taken into account in the phenomenological argument in Sec.
II. Note that if we pickup only the contribution just at the
Fermi surface assuming a constant density of states, then we
can show that diagram �d� and diagrams �e� and �f� cancel.
However, once we include the energy dependence of the den-
sity of states, there is a nonzero contribution from these dia-
grams as in the case of the quartic term of the GL functional.
By power counting, we can show that these diagrams give a
logarithmically divergent sound attenuation 
T� ln �, where
� is the renormalized mass term �47�. We think that in the
actual experiment this logarithmic divergence is negligible
compared with the stronger divergence caused by Eq. �62�.

Now we come to the case with longitudinal sound modes.
Concerning the fluctuation contribution to the longitudinal
sound attenuation, it is sufficient to consider diagram �c� in
Fig. 9 irrespective of the propagation direction because as
you can see in the following this diagram always gives the
divergent behavior with the same exponent. After analytical
continuation, diagram �c� gives

�L
R�k,�� � − i�B2� d�

sinh2� �

2T
�� d3Q��Im �d

R�Q�,���2,

�63�

where B=�L��n
	pWpdp

2�G�0��p , i�n��3=
�L

2 	pWpdp
2f���p,���

comes from the triangle block in the diagram and
Q�= �q ,Qz /�� is the rescaled three-dimensional wave vector
introduced in Eq. �43�. Roughly speaking, B is proportional
to the degree of particle-hole asymmetry, and in case of a
perfect particle-hole symmetry this contribution vanishes. By

power counting, we can show that this gives a divergent
sound attenuation 
L��−2, where � is the renormalized
mass term �47�. Therefore, as was already discussed in Sec.
II, the longitudinal sound attenuation always shows a diver-
gent behavior on approaching a second-order PI.

To summarize, a microscopic calculation of the fluctua-
tion sound attenuation in this section gives the same result as
obtained by a phenomenological argument in Sec. II. Results
of this section coincide with the main results in Sec. II, i.e.,
Eqs. �11�, �13�, and �15�, if we replace the bare mass �0 with
the renormalized mass �.

In Fig. 10 we plot the transverse sound attenuation along
�100� and �110� directions as functions of temperature. We
also plot in Fig. 11 the transverse sound velocities along
�100� and �110� directions as functions of temperature. As
was already discussed in Sec. II, there is a fluctuation con-
tribution to �110� phonons while there is no contribution to
�110� phonons. Comparing data for a cleaner system �Fig.
10�a�� to that for a dirtier system �Fig. 10�b��, we see that the
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FIG. 10. Calculated ultrasound attenuation for T100 phonons
�open circles� and T110 phonons �full circles� for �a� �=0.01 and
�b� 0.06 at constant field h=hVH. The parameters used in this figure
are the same as in Figs. 5 and 8. The data are normalized by 
MF at
the mean-field transition temperature Tc0 where 
MF is defined be-
low Eq. �60�.
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dirtier system shows broader fluctuation behavior in the re-
duced temperature �T−Tc� /Tc.

IV. DISCUSSION AND CONCLUSION

We have studied the effect on sound properties of the
Fermi-surface fluctuations near a dx2−y2-wave PI, and dis-
cussed that there is a propagation-direction-dependent selec-
tion rule in the fluctuation transverse sound attenuation and
sound-velocity softening. As is shown in Figs. 2, 10, and 11,
the transverse sound attenuation and sound-velocity soften-
ing along �110� direction are enhanced by the Fermi-surface
fluctuations while those along �100� direction are not af-
fected. Also it was argued that there are always fluctuation
contributions to the longitudinal sound attenuation and
sound-velocity softening. We note that a qualitatively similar
conclusion can be reached for a second-order structural tran-
sition which breaks the lattice symmetry in the same way,
but is not caused by a Fermi-surface instability. Such a tran-

sition would not be identified as a genuine Pomeranchuk
instability.

As was already mentioned in Sec. I, the possibility of the
dx2−y2-wave PI discussed in this paper has been
debated16,21,22,31,41,57,58 as a possible explanation for the
anomalous phase found in Sr3Ru2O7 under strong magnetic
fields, and it provides us with a good opportunity to apply
our results. In earlier experiments for this material, a meta-
magnetic transition was found59,60 at a magnetic field Bm
where the magnetization shows a steep jump. Since several
non-Fermi-liquid properties are observed around Bm, this
system was originally discussed in terms of the metamag-
netic quantum critical point,61 and the importance of van
Hove singularity for the metamagnetic transition was
discussed.62 However, the subsequent experiments using an
ultrapure sample found at least two transitions,63,64 and later
on it was revealed21 that the two transitions reflect the
boundary of a new ordered phase which is accompanied by
metamagnetic transitions. Based on a consideration on resis-
tivity data, it was proposed21 and demonstrated16 that the
observed new phase can be an ordered state with dx2−y2-wave
PI.

On this background, it is tempting to compare our results
with the experiments for bilayer ruthenate Sr3Ru2O7. First,
as was already discussed in Ref. 41, the calculated phase
diagram �Fig. 5�a�� looks quite similar to what was observed
in experiments �Fig. 3 in Ref. 21�. Second, the earlier experi-
ments can be interpreted as a result of the impurity effects
which narrow the area of the ordered phase �Fig. 5�b��, be-
cause two closely located transition lines �beyond the experi-
mental resolution� would look like a single transition line in
experiments. Third, the non-Fermi-liquid behaviors observed
in resistivity,59,60,65 specific heat,60,65,66 and thermal
expansion67 can be interpreted as a result of the Fermi-
surface fluctuations near the dx2−y2-wave PI discussed in Sec.
III B. This argument can also be applied to the non-Fermi-
liquid behavior observed in nuclear relaxation rate,68 if we
take into account the spin-orbit scattering. These facts sug-
gest that the dx2−y2-wave PI is a promising scenario for the
curious phase observed in this material. Hence, it is interest-
ing to apply our main result to Sr3Ru2O7, i.e., Eqs. �11�, �13�,
and �15� �note that Eq. �12� is replaced by Eq. �15��, and we
propose to measure the propagation-direction-resolved trans-
verse sound attenuation and sound-velocity softening in
Sr3Ru2O7, since it can determine experimentally the pres-
ence or absence of the PI in this material.

Finally we comment on the recent papers69,70 on the mi-
croscopic mechanism of the dx2−y2-wave PI for Sr3Ru2O7. In
these articles, the authors point out the importance of the
quasi-one-dimensional ruthenium orbitals �dxz and dyz� for
the occurrence of the dx2−y2-wave PI. On the other hand, our
microscopic analysis in Sec. III essentially uses quasi-two-
dimensional ruthenium orbital dxy. We point out that while
the microscopic analysis in Sec. III needs small
modifications71 if we start from dxz and dyz orbitals, the main
conclusion remains unchanged that the transverse sound at-
tenuation along �110� direction and the longitudinal sound
attenuation in all directions are enhanced by the Fermi-
surface fluctuations while the transverse attenuation along
�100� direction is not affected. This can be inferred from the
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FIG. 11. Calculated ultrasound velocity for T100 phonons �open
circles� and T110 phonons �full circles� for �a� �=0.01 and �b� 0.06
at constant field h=hVH. The parameters used in this figure are the
same as in Figs. 5 and 8. The data are normalized by the bare sound
velocity s�0�. Here, we have used a moderately large electron-
phonon coupling constant �2=0.001 to enlarge the signal, whereas
the actual softening would be much smaller�Ref. 51�.
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phenomenological nature of the argument given in Sec. II to
arrive at Eqs. �11�, �13�, and �15�.

ACKNOWLEDGMENTS

We are grateful to S. Fujimoto for his help in the early
stage of our research. One of us �H.A.� would like to thank
D. Agterberg, B. Binz, K. Ishida, Y. Maeno, and H. Yamase
for useful comments, and M. Ossadnik, A. Rüegg, and all the
member of the condensed matter group in ITP at ETH Zürich
for valuable discussions. This study was financially sup-
ported through the Japan Society for the Promotion of Sci-
ence and the NCCR MaNEP of the Swiss Nationalfonds. A
part of the numerical calculations was carried out on Al-
tix3700 BX2 at YITP in Kyoto University.

APPENDIX: CALCULATION OF �d,0
irr,R(q ,�)

To evaluate �d,RPA
R �q ,��, we need to calculate �d,0

irr,R�q ,��.
On Matsubara �imaginary� axis, �d,0

irr �q , i�m� is given by Eq.
�38�. We transform the Matsubara sum into an integral over
the contour as shown in Fig. 12 using T��n

F�i�n�
=� d�

4�i tanh� �

2T �F���, and perform analytical continuation
i�m→�+ i0+. Contour C1 and C3 give the real part of

�d,0
R �q ,�� for small �, and in this case we can evaluate this

quantity in the limit �→0,

Re �d,0
irr,R�q,�� =� d�

4�i
tanh� �

2T
��

p
dp

2

� ��G��
�0�R�p + q,��G��

�0�R�p,��� − c.c.�

= T�
�n

�
p

dp
2�G��

�0��p + q,i�n�G��
�0��p,i�n��

= �
p

dp
2� f���p,��� + � f���p,���

4
�Mx + My��q2

+ � f���p,���

12
�vx

2 + vy
2��q2� + O�q4� , �A1�

where we have used �
�p

G�0��p , i�n�= �G�0��p , i�n��2 and

T��n
�G�

�0��p , i�n��n+1= 1
n!

�n

�p,�
n f��p,��, and Mj�j=x ,y� is given

below Eq. �42�.
On the other hand, contour C2 gives the imaginary part of

�d,0
irr,R�q ,�� for small ��vF�q� as

Im �d,0
irr,R�q,�� = −� d�

4�i
�

p
dp

2� tanh� �

2T
�

i/	 − vp · q
�

�
�

��
�G��

�0�R�p,�� − c.c.�� + O��2�

= − T�
�n

�
p

dp
2� i�

2� + ivp · q
� �

�p
G��

�0��p,i�n�

+ O��2�

=
i�

�q��p
dp

2� − f���p,���

2�/�q� + ivp · q̂
� + O��2� , �A2�

where we have used �
��G�

�0�R/A�p ,��=− �
�p

G�
�0�R/A�p ,��.
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